一.页码问题
对多少页出现多少1或2的公式
如果是X千里找几,公式是 1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,
比如,7000页中有多少3 就是 1000+700*3=3100(个)
20000页中有多少6就是 2000*4=8000 (个)
友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了
二,握手问题
N个人彼此握手,则总握手数
S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2
例题:
某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人
A、16 B、17 C、18 D、19
【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。按照排列组合假设总数为X,则Cx取3=152 但是在计算X时却是相当的麻烦。
我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际的握手次数是x×
(x-3)÷2=152 计算的x=19人
三,钟表重合公式
钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数
四,时钟成角度的问题
设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)
钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】 【】表示绝对值的意义(求角度公式)
变式与应用
2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)
五,往返平均速度公式及其应用(引用)
某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
证明:设A、B两地相距S,则往返总路程2S,往返总共花费时间 s/a+s/b
故 v=2s/(s/a+s/b)=2ab/(a+b)
六,空心方阵的总数
空心方阵的总数= (最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4
= 最外层的每一边的人数^2-(最外层每边人数-2*层数)^2
= 每层的边数相加×4-4×层数
空心方阵最外层每边人数=总人数/4/层数+层数
方阵的基本特点:
① 方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;
② 每边人(或物)数和四周人(或物)数的关系:
③ 中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷4+1)2
例:① 某部队排成一方阵,最外层人数是80人,问方阵共有多少官兵?(441人)
② 某校学生刚好排成一个方队,最外层每边的人数是24人,问该方阵有多少名学生?(576名)解题方法:方阵人数=(外层人数÷4+1)2=(每边人数)2
③ 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?(289人)
解题方法:去掉的总人数=原每行人数×2-1=减少后每行人数×2+1
典型例题:某个军队举行列队表演,已知这个长方形的队阵最外围有32人,若以长和宽作为边长排出2个正方形的方阵需要180人。则原来长方形的队阵总人数是( )
A、64, B、72 C、96 D、100
【解析】这个题目经过改编融合了代数知识中的平方和知识点。长方形的(长+宽)×2=32+4 得到长+宽=18。可能这里面大家对于长+宽=18有些难以计算。你可以假设去掉4个点的人先不算。长+宽(不含两端的人)×2+4(4个端点的人)=32,则计算出不含端点的长+宽=14 考虑到各自的2端点所以实际的长宽之和是14+2+2=18
求长方形的人数,实际上是求长×宽。根据条件长×长+宽×宽=180 综合(长+宽)的平方=长×长+宽×宽+2×长×宽=18×18 带入计算即得到B。其实在我们得到长宽之和为18时,我们就可以通过估算的方法得到选项B
七,青蛙跳井问题
例如:①青蛙从井底向上爬,井深10米,青蛙每跳上5米,又滑下4米,这样青蛙需跳几次方可出井?(6)
②单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米来,问小赵几次才能爬上单杠?(7)
总解题方法:完成任务的次数=井深或绳长 - 每次滑下米数(遇到半米要将前面的单位转化成半米)
例如第二题中,每次下滑半米,要将前面的4米转换成8个半米再计算。
完成任务的次数=(总长-单长)/实际单长+1
八,容斥原理
总公式:满足条件一的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数
【2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?
A.27人 B.25人 C.19人 D.10人
上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。但使用容斥原理对思维要求比较高,而画图浪费时间比较多。鉴于此类问题一般都按照类似的模式来出,下面给出一个通解公式,希望对大家解题能有帮助:
例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。
【2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少?A.22 B.18 C.28 D.26
代入公式:26+24-x=32-4,得到x=22
九,传球问题
这道传球问题是一道非常复杂麻烦的排列组合问题。
【解析】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发----传球问题核心公式:N个人传M次球,记X=[(N-1)^M]/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。大家牢记一条公式,可以解决此类至少三人传球的所有问题。四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式:
A.60种 B.65种 C.70种 D.75种 x=(4-1)^5/4 x=60
十,圆分平面公式:
N^2-N+2,N是圆的个数