行测应试辅导——数量关系、资料分析专项
一、数字推理进阶策略
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在头脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
即使一些表面看起来很复杂的数列,只要我们对其进行细致的分析和研究,就会发现,将相邻的两个数相加或相减、相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
在做一些复杂的题目时,要有一个基本思路:尝试错误。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后才能找到正确的规律。
另外还有一些关键点需掌握:
(1)培养数字、数列敏感度是应对数字推理的关键,例如,看到数列数字比较多就要马上想到组合数列等;
(2)熟练掌握各种基本数列(自然数列、平方数列、立方数列等);
(3)熟练掌握各种数列的变式;
(4)掌握最近几年的最新题型并进行大量的习题训练。
二、数学运算
数学运算的试题一般比较简短,其知识内容和原理多限于中小学数学中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要应试者算得既快又准。为了做到这一点,应当注意以下几个方面:一是掌握一些常用的数学运算技巧、方法和规律,尽量多用简便算法。二是准确理解和分析题干,正确把握题意,切忌被题中一些枝节所诱导,落入出题者的“圈套”。三是熟记一些基本公式。四是尽可能多地学习新题型,掌握新方法。五是重点掌握一些新变化及应对题型的根本理论知识。六是加强思维训练,反复练习,努力提高做题速度。七是学会用代入法和排除法解题。
总的来说数量关系试题的解答,要把握以下三个方面:
(1)心算胜于笔算。该项测验的应试者,平均一道题需50~55秒的时间作答,可见对速度要求之高了。在数量关系测验中,运算一般比较简单,采用心算可以节省时间,将有限的时间尽量集中用于较难试题的解答上。
(2)先易后难。在规定时间内,每道题虽难度不一样,但可先通过完成简单题的解答,使心理更加平稳,更有利于难度较大题目的解答。如果因解答一题受阻,而失去了解答更多试题的机会,就会造成不应有的丢分。
(3)运用速算方法。不少数学运算题可以采用简便的速算方法,而不需要全演算。为此,在解题前,先花一点时间考察有没有简便算法来解题是值得的,也是必要的。如果找到简便算法,会大大减少解题所用的时间,达到事半功倍的效果。
一些运算过程中涉及的基本公式:
名 称 |
表 达 式 | |
因式分解 |
a2-b2=(a+b)(a-b) |
a3+b3=(a+b)(a2-ab+b2) |
a3-b3=(a-b)(a2+ab+b2) | ||
特殊数列前n项和 |
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 |
1+3+5+7+9+11+13+15+…+(2n-1)=n2 |
2+4+6+8+10+12+14+…+(2n)=n(n+1) |
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 | |
13+23+33+43+53+63+…+n3= |
1×2+2×3+3×4+4×5+5×6+6×7+…+n(n+1)=n(n+1)(n+2)/3 | |
等差数列求和公式 |
Sn=na1+ |
Sn=×d |
等比数列求和公式 |
Sn=qa1(q=1) |
Sn=(q≠1,an≠0) |
正方形 |
C:周长 S:面积 a:边长 |
C= |
S=a×a | ||
正方体 |
V:体积 a:棱长 S表:表面积 |
S表=a×a×6 |
V=a×a×a | ||
长方形 |
C:周长 S:面积 a:长 b:宽 |
C=2(a+b) |
S=ab | ||
长方体 |
V:体积 S表:表面积 a:长 |
S表=2(ab+ah+bh) |
V=abh | ||
三角形 |
S:面积 a:底 h:高 |
S=ah÷2 |
平行四边形 |
S:面积 a:底 h:高 |
S=ah |
梯形 |
S:面积 a:上底 b:下底 h:高 |
S=(a+b)h÷2 |
圆形 |
S:面积 C:周长 R:直径 r:半径 |
C=πR=2πr |
S=πr2=π2=πR2/4 | ||
圆柱体 |
V:体积 h:高 S底:底面积 |
S侧=C×h |
V=S底×h | ||
圆锥体 |
V:体积 h:高 S底:底面积 |
V=πr2h |
球的表面积 |
S:表面积 r:半径 |
S=4πr2 |
数学运算中的统筹问题
统筹问题在日常生活中会经常遇到,是一个研究怎样节省时间、提高效率的问题。随着公务员考试数学运算试题越来越接近生活,注重实际,这类题目出现的几率也越来越大。所以我们有重点研究统筹问题的必要。下面让我们通过两道经典的题目来了解一下。
1.毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?
A.16 B
【答案】A。
【解析】:因为是允许两头牛同时过河的(骑一头,赶一头),所以若要时间最短,则一定要让耗时最长的两头牛同时过河;把牛赶道对面后要尽量骑耗时最短的牛返回。我们可以这样安排:先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,故最少要用5+8+3=16分钟。
此题要求“最省时”,这时我们应该在头脑中反应出“若要最省时,则尽量把最耗时的几件事同时完成”。
2.甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服。甲厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服。现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
A.30 B
【答案】D。
【解析】:两厂联合生产,尽量发挥各自特长。因乙厂生产上衣的效率高,所以安排乙厂全力生产上衣。由于乙厂用月生产1200件上衣,那么乙厂全月可生产上衣:1200÷=2100件。同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子:900÷=2250条。为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服;900×=60套,故现在比原来每月多生产2100+60-(900+1200)=60套。
此题要求“效率最高”,这时我们应想到“让精于做某事的一方只做此事”。
行测考试中几种典型的数的拆分问题
数的拆分问题是公务员考试常考的题型之一,考察对数的基本特性的掌握,通常此类问题都比较灵活。一般来说此类问题整体难度不大,不过像考试中常用的代入法等再此将不再实用,故掌握方法就变得特别重要。下面我们就和大家分享几种常用的解决此类问题的方法。
1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。
例题1:.三个质数的倒数之和为,则a=( )
A.68 B.83 C.95 D.131
解析:将231分解质因数得231=3×7×11,则++=,故a=131。
例题2. 四个连续的自然数和积为3024,它们的和为()
A.26 B.52 C.30 D.28 (2004年山东行测真题)
解析:分解质因数:3024=2×2×2×2×3×3×3×7=6×7×8×9,所以四个连续的四个自然数的和为6+7+8+9=30.
2.已知某几个数的和,求积的最大值型:
基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号)
推 论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且尽当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。
例题1:3个自然数之和为14,它们的的乘积的最大值为( )
A.42 B.84 C.100 D.120
解析:若使乘积最大,应把14拆分为5+5+4,则积的最大值为5×5×4=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导思想。下面再举一列大家可以自己体会.
例题2:将17拆分成若干个自然数的和,这些自然数的乘积的最大值为( )
A.256 B.486 C.556 D.376
解析:将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为×2=486。
3. 排列组合型: 运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的
例题1.:有多少种方法可以把100表示为(有顺序的)3个自然数之和?( )
A.4851 B.1000 C.256 D.10000
解析:插板法:100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了两个部分。而从99个空任意选出两个空的选法有:C992=99×98/2=4851(种);故选A。
(注:此题没有考虑0已经划入自然数范畴,如果选项中出现把0考虑进去的选项,建议选择考虑0的那个选项。)
例题2:学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?
A.1152 B.384 C.28 D.12
解析:本题实际上是想把1152分解成两个数的积。
解法一:1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。
解法二:1152=,用排列组合方法:我们现在就是要把这7个“2”和两个“3”分成两部分,每种分配方法对应一种拼法。具体地:
1) 当两个“3”不挨着时,有4种分配方法,即:(3,3×)、(3×2,3×)、()()
2) 当两个“3”挨着时,有8种分配方法;略。
故共有:8+4=12种,
这里我们只讨论了数的拆分的几种比较常见的类型及其解题思想,但此类问题决不仅仅局限于此,我们会在以后陆续补充完善。
-
-